THE ROLE OF PALM OIL PRICE IN INDONESIA’S AGGREGATE DEMAND

Susan Sunila Sharma

Department of Finance & Centre for Financial Econometrics, Deakin Business School, Australia.
Email: s.sharma@deakin.edu.au

ABSTRACT

This study examines the predictability of Indonesia’s aggregate demand using palm oil price. We conduct both in-sample and out-of-sample forecasting evaluations. These evaluations are based on time-series quarterly and monthly data frequencies and cover three different forecasting horizons. Overall, we find that palm oil price predicts real GDP, consumption expenditure, total investment, net spending from overseas, while predictability of government spending is sensitive to the use of forecasting approaches and horizons.

Keywords: Palm oil price; Aggregate demand; Time-series; Predictability.
JEL Classifications: C5; E1.

Article history:
Received : October 6, 2019
Revised : January 23, 2020
Accepted : June 02, 2020
Available online : June 15 2020
https://doi.org/10.21098/bemp.v23i2.1305
I. INTRODUCTION

The aim of this paper is to examine the role of Palm Oil price \((PO) \) in Indonesia’s aggregate demand. In other words, we test whether \(PO \) predicts Indonesia’s real Gross Domestic Product \((GDP) \). In addition, we also test whether \(PO \) influences all or only some components of \(GDP \). Thus, we use \(PO \) to predict four major components of real GDP, namely household spending (also known as consumption, \(Cons\)), investment by businesses and households (\(Invest\)), spending by the government (\(GovS\)), and the net spending from overseas (exports minus imports, \(X-M\)).

Our focus on \(PO \) and application on Indonesia is motivated by the fact that palm oil production plays a vital role in Indonesia’s agricultural and economic development. The planted area for palm has increased from 14.67 million hectares to 16.38 million hectares (United States Department of Agriculture, 2020). It is, therefore, expected that this increase in plantation area will lead to 43.5 million tons of oil production in 2020/21. It is also forecasted by the United States Department of Agriculture (2020) that palm oil consumption will slightly increase from 15.30 million tons in 2019/20 to 15.35 in 2020/21. The increase in consumption is due to the stable industrial demand for biodiesel and the increase in consumption in the food sector.

Indonesia is considered as a leading exporter of palm oil. India and China are considered major export markets for Indonesian palm oil, which accounts for 17.4% and 17.3%, respectively, of exports in 2018/19. The other export markets include Pakistan, Malaysia, and the Netherlands (see Indonesia Investments, 2017). Based on the above discussion, it is clear that the palm oil industry plays a vital role in Indonesia’s agricultural and economic development. In other words, it can be construed that exports of palm oil are an important source of foreign exchange earnings for Indonesia. The sector also provides employment opportunities to millions of Indonesians. According to the Directorate General of Estate Crops Indonesia (2017), in 2017, the palm oil industry employed 3.8 million people, which is approximately 2.4% of the total Indonesian workforce. The Indonesian government, therefore, increasingly promotes oil palm cultivation in order to alleviate poverty and allow for advance development in remote forested areas (see Potter, 2012; Cooke, 2012; Li, 2016). However, as noted by Obidzinski, Andriani, Komaundin, Andrianto (2012) and Obidzinski, Dermawan, Hadianto (2014), an expansion of the palm oil industry increased income benefits mainly amongst skilled migrants and wealthy farmers while marginalising others. This has led to social disparities. Thus, based on this discussion, we are motivated to investigate whether palm oil industry plays a role in Indonesia’s economic performance which is collectively captured by Indonesia’s aggregate demand \((GDP) \).

1 Kadarusman and Pramudya (2019) provide further insights on the effects of India and China on the sustainability of palm oil production in Indonesia.
2 See https://www.indonesia-investments.com/business/commodities/palm-oil/item166
3 Santika et al. (2019) provide a detailed discussion on the impact of palm oil plantation development on changes in objective and material aspects of well-being across villages in Kalimantan, Indonesia, over the 2000 to 2014 period.
Next, we review the well-established literature which examines the relationship between oil price and economic performance. Two strands of this literature are popular. In the first strand of the literature, studies have examined whether oil price is a significant determinant of economic performance (see for example, Kilian, 2008, Kilian and Vigfusson, 2011). The main findings emanating from this literature are inconclusive. Some studies note that oil price has a negative effect on economic growth (see Kilian, 2008), and some conclude that there exists a non-linear relationship between oil price and economic growth (see Hamilton, 2003).

The second strand of the literature has roots in the work of Hamilton (1983), who examined whether oil price significantly predicts economic growth. The major focus of these studies is on the US economy. One exception is Narayan, Sharma, Poon, and Westerlund (2014), who examine whether oil price predicts economic growth in 45 countries. They find that the predictive power of oil price is country dependent. Overall, they find that oil price significantly predicts economic growth in 70% of the countries in their sample.

In the above-mentioned studies, authors have generally used the world crude oil price series irrespective of the countries in their application. However, for countries such as Indonesia, where palm oil production plays a vital role in their agricultural and economic development, it may be the case that palm oil (rather than crude oil price) is a more relevant price to consider from the economic growth point of view. To the best of our knowledge, there are no studies examining the relationship between PO and economic growth. Therefore, considering this research gap, the focus of our study is not on crude oil price but on crude PO and how it predicts Indonesia’s economic growth. Our hypothesis is that PO predicts Indonesia’s economic growth. We test this hypothesis by employing a bivariate predictive regression model. More specifically, we regress aggregate demand on the one-period lagged crude PO.

Our approach differs from the existing literature in the following ways. Our study is the first to examine the predictability of aggregate demand using PO instead of world crude oil price as a predictor variable. Moreover, we not only focus on predictability of Indonesia’s economic growth, but we also consider the four other aggregate demand components (namely, Consps, Invests, GovSs, and X-M). Here, our aim is to understand whether PO affects all or only some of the components of aggregate demand. We use the popular Westerlund and Narayan (WN, 2012 and 2015) Flexible Generalized Least Squares (FGLS) estimator to examine the null hypothesis of “no predictability”. The literature on the predictability of economic growth does not pay much attention to the different features of time-series data. Narayan et al., (2014) document existence of forecasting related data issues, such as persistency, endogeneity, and heteroskedasticity in their time-series quarterly data and make note that if these issues are ignored, it will have a direct implication.

It is worth noting that the literature on oil prices is voluminous and one can classify the literature into multiple strands. The most popular issue which has emerged in the last six months relates to the relationship between pandemic COVID-19 and oil price (see for example, Narayan, 2020; Apergis and Apergis, 2020; Gil-Alana and Monge, 2020; Liu, Wang, and Lee, 2020; Prabheesh et al. 2020; Devpura and Narayan, 2020; Huang and Zheng, 2020; and Salisu and Adediran, 2020). While we do acknowledge different strands of this literature, our focus relates to the literature which examines the relationship between oil prices and economic performance.
on the predictability outcomes. By using the WN estimator, we control for all the commonly known features of data.

We also devote our analysis to ascertaining the robustness of our results. We conduct all analysis by converting quarterly data into monthly frequency. We also use three different forecasting horizons (one-period, three-periods, and six-periods ahead). Finally, in out-of-sample analysis, we increase the estimation window from 50% to 75% of the data sample to generate out-of-sample test statistics.

Our study contributes to the literature which examines the predictability of economic growth using oil prices. Our approaches, as discussed earlier, produce three main findings. First, we uncover strong evidence of in-sample predictability of Indonesia’s real GDP using PO only when we consider a three-period-ahead (quarterly data) and a six-period-ahead (monthly data) forecasting horizon. Irrespective of the use of data at different frequencies, we do not find evidence of predictability of Indonesia’s GDP at the one-period ahead forecasting horizon.

Second, when we consider out-of-sample results, our findings remain inconsistent with respect to the use of two out-of-sample forecasting evaluation measures. Additionally, we note that when we increase the in-sample estimation window from 50% to 75% of the sample to generate recursive forecasts, our results remain unchanged. Another observation worth noting is that our out-of-sample results remain consistent regardless of the use of different data frequencies and different forecasting horizons.

Third, as mentioned earlier, we further investigate whether PO predicts all or only some components of aggregate demand. Overall, we find strong evidence of predictability using PO in the case of $Consp$, followed by $Invst$. Again, when in-sample predictability test is considered, the evidence that aggregate demand is predictable from $Consp$ and $Invst$ is found when $h = 3$ and $h = 6$ for data at quarterly and monthly frequencies, respectively. With respect to out-of-sample evaluations, relative Theil U (RTU) statistics provides favorable evidence in support of PO-based predictability model over the constant-only model. This evidence is consistent with the use of two different data frequencies, different in-sample estimation windows, and the use of three different forecasting horizons.

We also embark on robustness checks to ascertain our earlier conclusions. More specifically, we use adjusted-GDP as our dependent variable in predictability models. In other words, we use three variables (Indonesian exchange rate (in terms of the US Dollar, EXR), percentage change in consumer price index (INF), and foreign direct investment (FDI)) from the literature on determinants of economic growth (see for instance, Burdekin et al., 2004; Bittencourt, 2012; Vinayagathasan, 2013; Gunby, Jin, and Reed, 2017; Lee and Yue, 2017; Huang, 2017) to adjust GDP.5

Our approach for adjusting GDP is very simple and is carried out in two steps. First, we estimate a bivariate regression model, where we regress GDP individually on EXR, INF, and FDI. In other words, we estimate three regression

5 It is important to note that our study does not imply that only these three variables (exchange rate, inflation rate, and foreign direct investments) are statistically significant determinants of GDP. There is a large literature on growth models and many other variables are empirically tested and considered as determinants of GDP for different countries. However, the choice these three variables (namely exchange rate, inflation rate, and foreign direct investments) is entirely based on data availability for Indonesia. We also believe they sufficiently capture the bulk of movements in GDP.
models, one model for each of three variables, EXR, INF, and FDI. Second, we extract the constant and residuals from the estimated model. The sum of the estimated constant and residuals is considered as adjusted-GDP. Given we have estimated altogether three regression models, we have, therefore, constructed three adjusted-GDP series (namely GDP_{EXR}, GDP_{INF}, and GDP_{FDI}). Now, these adjusted-GDP series are considered as dependent variables in our predictability model. Our estimation approach remains same as discussed earlier. Our in-sample predictability results remain the same and consistent with main findings. When we consider out-of-sample evaluations, overall, we find our PO-based predictability model outperforms the benchmark constant-only model for GDP_{FDI}. In the case of GDP_{EXR} and GDP_{INF}, we find mix evidence in support of PO-based predictability model over the constant only model. It is also worth noting that the evidence in support of PO-based predictability model over the benchmark model is based on RTU statistics and not when we consider out-of-sample R-squared (OOSR2). This finding is again consistent with our main findings.

The balance of the paper proceeds as follows. We discuss our data and methodology in Section II. Section III discusses our main findings, followed by a robustness check in Section IV. Section V discusses implications of our findings, and finally, Section VI sets forth our conclusions.

II. DATA AND METHODOLOGY
A. Data set
This study is based on time-series quarterly data for Indonesia. The sample size is dictated by data availability and spans the period 2008Q1 to 2019Q4. The PO (measured in USD per metric ton) is sourced from the Primary Commodity Price System published by the International Monetary Fund. Data on real GDP growth rate and four major components of GDP, namely Consp, Invst, GovS, and X-M are sourced from Bank Indonesia. We have also used three control variables, namely, INF, FDI, and EXR. Again, all control variables are sourced from Bank Indonesia, except INF, which is sourced from the International Financial Statistics (IFS). It is important to note that consumer price index is sourced in monthly frequency and is converted into quarterly series. We have provided full data description in Table 1.

Table 1. Data Description
This table provides detail data description of all variables considered in this study.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
</table>
Table 1. Data Description (Continued)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>Total exports of goods and services (billion USD)</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Bank Indonesia</td>
</tr>
<tr>
<td>M</td>
<td>Total imports of goods and services (billion USD)</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Bank Indonesia</td>
</tr>
<tr>
<td>X-M</td>
<td>Percentage change in net spending from overseas (X-M)</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Authors calculation</td>
</tr>
<tr>
<td>GovS</td>
<td>Percentage change in government spending [government spending = GDP - (consumption+investment+exports-imports)]</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Authors calculation</td>
</tr>
<tr>
<td>PO</td>
<td>Palm Oil Price (USD per metric ton)</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>International Monetary Fund e-library</td>
</tr>
</tbody>
</table>

Control variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Description</th>
<th>Frequency</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI</td>
<td>Consumer price index (CPI) measure of prices paid by consumers for a market basket of consumer goods and services</td>
<td>Data is sourced in monthly frequency and has been converted into quarterly frequency Quarterly [2008Q1 – 2019Q4]</td>
<td>International Monetary Fund e-library</td>
</tr>
<tr>
<td>INF</td>
<td>Percentage change in CPI</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Authors computation</td>
</tr>
<tr>
<td>FDI</td>
<td>Percentage change in foreign direct investment</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Bank Indonesia</td>
</tr>
<tr>
<td>EXR</td>
<td>Percentage change in Indonesia’s exchange rate in terms of USD</td>
<td>Quarterly [2008Q1 – 2019Q4]</td>
<td>Bank Indonesia</td>
</tr>
</tbody>
</table>

B. Methodology

In order to examine the predictability of Indonesia’s aggregate demand, we use the following time-series predictive regression model:

$$GDP_t = \alpha + \beta PO_{t-1} + \epsilon_t$$ \hspace{1cm} (1)

Here, GDP_t denotes economic growth in quarter t proxied by the growth rate in real GDP, PO_{t-1} is the one-period lag palm oil price (predictor) variable, and ϵ_t is the disturbance term. The null hypothesis of no predictability is $H_0 : \beta = 0$. In addition, we use PO to predict the four major components of aggregate demand ($Consp$, $Invst$, $GovS$, and $X-M$). Therefore, we estimate Equation (1) five times, one model in which GDP is the dependent variable and one model for each of the four aggregate demand components. It is important to note that all our dependent variables are taken in percentage growth form.

We use a newly developed estimator proposed by WN (2012, 2015), namely a flexible-generalised-least-squares (WN-FGLS) estimator, to examine the null hypothesis of no predictability. Several studies note the estimator’s importance particularly in how it handles data issues such as persistency, endogeneity and
The Role of Palm Oil Price in Indonesia’s Aggregate Demand

heteroscedasticity. These features of data matter because the literature shows that financial time-series data (even at the quarterly frequency) suffer from persistency, endogeneity and heteroscedasticity.

III. MAIN FINDINGS
A. Preliminary results
We begin by considering the descriptive statistics. We read selected results from Table 2, where we report statistical features of data. We note that the mean of aggregate demand components, except GovS, is positive. The mean value of PO is $735.29 (per metric ton), and its standard deviation is $194.87 (per metric ton). For all aggregate demand components (except for X-M), the skewness statistic has a negative sign, implying a left-tailed distribution. Two aggregate demand components (GovS and X-M) have a relatively higher kurtosis statistic compared to GDP, Consp, and Invst. However, for all aggregate demand variables, the kurtosis statistic is greater than 3, implying a leptokurtic distribution. On the other hand, in the case of PO, the skewness and kurtosis statistics are 0.72 and 2.61, respectively. The main implication of these descriptive statistics is that the distribution of all variables is non-normal.

Table 2. Descriptive Statistics
This table reports selected descriptive statistics of aggregate demand components and palm oil price. The detailed definition of variables is provided in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>GDP</th>
<th>Consp</th>
<th>Invst</th>
<th>GovS</th>
<th>X-M</th>
<th>PO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.5516</td>
<td>0.4623</td>
<td>0.8791</td>
<td>-76.6623</td>
<td>1110.3970</td>
<td>735.2957</td>
</tr>
<tr>
<td>Median</td>
<td>1.0898</td>
<td>0.8420</td>
<td>1.7753</td>
<td>2.0962</td>
<td>-47.7226</td>
<td>687.7028</td>
</tr>
<tr>
<td>Maximum</td>
<td>12.8744</td>
<td>15.3988</td>
<td>15.0501</td>
<td>58.1262</td>
<td>55622.8300</td>
<td>1209.7850</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>5.1181</td>
<td>4.7188</td>
<td>5.7920</td>
<td>375.3110</td>
<td>8126.2570</td>
<td>194.8730</td>
</tr>
<tr>
<td>Skewness</td>
<td>-1.1004</td>
<td>-0.2145</td>
<td>-0.3701</td>
<td>-4.6594</td>
<td>6.6299</td>
<td>0.7190</td>
</tr>
<tr>
<td>Kurtosis</td>
<td>6.8208</td>
<td>5.9019</td>
<td>3.8690</td>
<td>23.4164</td>
<td>44.9787</td>
<td>2.6097</td>
</tr>
</tbody>
</table>

In unreported (un-tabulated) results, we note that for all aggregate demand components the first order autoregressive coefficient is less than 0.5; however, in the case of predictor variable (PO), the coefficient is 0.84. This implies that the predictor variable is highly persistent. The ADF unit root test suggests that the null hypothesis of unit root is comfortably rejected at 1% level for all aggregate

6 The discussion on the derivation of the WN-FGLS estimator is not provided in detail because the model has been extensively explained in the original paper of Westerlund and Narayan (2012, 2015). Furthermore, several studies (see for instance, Devpura et al., 2018; Sharma, 2016; Sharma, 2019; Phan, Sharma, Tran, 2018) have adopted the WN-FGLS estimator and have provided a summary of the model derivations. We refer interested readers to these papers.

7 Sharma, Tobing, and Azwar (2018) provide an extensive discussion on the features of time-series macroeconomics data for Indonesia.
demand variables, but the same is not true in the case of PO, which follows a non-stationary process. We also test the null hypothesis of no autoregressive conditional heteroskedasticity. The null hypothesis is rejected at the 1% significance level only in the case of GovS. This implies that all aggregate demand (except GovS) components and the predator variable, PO, are heteroskedastic.

We conclude with a test of predictor endogeneity using the test of Westerlund and Narayan (2015). We find that PO is endogenous when it is used to predict GDP and Consp. In the remaining three models, that is, when Invst, GovS, and X-M are predicted, we find that PO is not endogenous. Overall, this analysis confirms that the commonly statistical issues faced by predictive regression models are active in our data sample and it is important to model persistency, endogeneity and heteroskedasticity in test for predictability of aggregate demand.

B. Main results

Now we turn to our main findings obtained by estimating Equation (1). Results reported in Table 3 are obtained using two criteria. First, we obtain results using quarterly (Panel A) and month data (Panel B). Note our data series are sourced at quarterly frequency. However, due to a smaller number of observations, we convert quarterly series to monthly series using the linear frequency conversion method. This is done to see if our results hold if we use more observations for empirical analysis. Second, we report the WN-FGLS coefficient and its corresponding p-values at the one-period-ahead (h = 1), three-periods-ahead (h = 3), and six-periods-ahead (h = 6) for all predictability models using data at both quarterly and monthly frequencies.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Panel A: Quarterly</th>
<th>Panel B: Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td>h = 1</td>
<td>h = 1</td>
<td></td>
</tr>
<tr>
<td>GDP</td>
<td>0.1349 0.2571</td>
<td>GDP</td>
</tr>
<tr>
<td>Consp</td>
<td>-0.0126 0.8903</td>
<td>Consp</td>
</tr>
<tr>
<td>Invst</td>
<td>0.0577 0.5619</td>
<td>Invst</td>
</tr>
<tr>
<td>GovS</td>
<td>-0.0304 0.8017</td>
<td>GovS</td>
</tr>
<tr>
<td>X-M</td>
<td>-0.0764 0.3585</td>
<td>X-M</td>
</tr>
</tbody>
</table>

Table 3. In-sample Predictability Test Results

Here, we report in-sample predictability test results obtained using WN (2012, 2015) time-series predictability model. More specifically, we report the WN-FGLS estimator with its corresponding p-values which determines the null hypothesis of “no predictability”. The results are reported for a one-period (h = 1), three-period (h = 3) and six-period (h = 6) forecasting horizons for quarterly (Panel A) and monthly (Panel B) datasets. Finally, *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

8 Data are converted from low (quarterly) to high (monthly) frequency using the linear frequency method programmed in the EVIEWS software.
Our findings are as follows. We begin with results in Panel A, which shows that PO is a statistically significant predictor of GDP only when we consider the three-periods-ahead forecasting horizon. In the case of $h = 1$ and $h = 6$, we note that PO is an insignificant predictor of GDP. Next, we examine whether PO predicts the four components of aggregate demand. Overall, we find that PO significantly predicts Consp and Invst in the case of $h = 3$. Moreover, we do not find any statistically significant evidence of PO as a predictor of the components of aggregate demand.

Additionally, we consider results using monthly data as reported in Panel B. We do not see much difference in our findings. More specifically, we report PO as a statistically significant predictor of GDP at $h = 6$. This is expected as we have now moved from a low to a high data frequency, and therefore, the significance observed using data at the two frequencies will differ for different forecasting horizons. In fact, any significant results observed at lower forecasting horizons using quarterly data should be collaborated with higher forecasting horizon in the case of monthly data. This is exactly what we observe from the results. More specifically, when we consider quarterly data, most of the significant results are obtained at $h = 3$, whereas, in the case of monthly data, the significant results are obtained at $h = 6$. We make the same observation when predicting Consp and Invst. In other words, PO significantly predicts Consp and Invst at $h = 6$ when using monthly data. Additionally, we note that PO is found to be a statistically significant predictor of X-M at $h = 1$ and $h = 3$. Overall, we conclude that, irrespective of data frequency and forecasting horizons, PO is found to be a statistically insignificant predictor of GovS, whereas, in other cases (such as when predicting GDP, Consp, Invst, and X-M), we find some evidence of significant predictability.
Next, we report out-of-sample evaluation results. More specifically, here we examine the importance of PO in forecasting aggregate demand components vis-à-vis the constant model. Our approach is as follows. We use 50% and 25% in-sample periods to generate recursive forecasts of aggregate demand components for the remaining 50% and 75% of the sample, respectively. We use two out-of-sample forecasting statistics, namely the OOSR2 and the RTU, such that they allow us to compare the PO-based predictability model with a constant-only model. The difference in the mean squared errors resulting from the PO-based forecasting model and the constant model is captured by OOSR2. While RTU is simply a ratio of Theil U statistics from PO-based predictability model relative to Theil U statistics from constant model. The construction of these statistics is further explained in Sharma (2019). The OOSR2 and RTU statistics imply that when OOSR2>0 and RTU<1, our PO-based predictability model is preferred over the constant model. Additionally, once again we have estimated an in-sample model using three forecasting horizons (\(h=1\), \(h=3\) and \(h=6\)) and produced results using data at both quarterly and monthly frequencies. These statistics are reported in Table 4.

We focus first on quarterly data results from Panel A of Table 4. We note that irrespective of the out-of-sample period and forecasting horizon used, RTU <1 is recorded in the case of GDP and Consp, supporting the PO-based model. On the other hand, OOSR2 statistics are positive in the case of Consp and negative for GDP. Additionally, with respect to other three aggregate demand components (Invst, GovS, and X-M), we find mixed evidence in support of our proposed PO-based forecasting model. For instance, in the case of GovS, we find that the PO-based predictability model is superior to the constant-only model at forecasting horizons, \(h=1\), \(h=3\) and \(h=6\). In the case of GovS, we find that both statistics support our PO-based model. However, in the case of Invst, RTU statistics are in favour of PO-based predictability model but this evidence is not robust when using the OOSR2 statistics.

Results in Panel B reproduces results using monthly data. Our econometric approach remains same as when we used quarterly data. Results for GDP are insensitive to the use of different data frequencies. On the other hand, for four aggregate demand components, the evidence in support of the PO-based predictability model is dependent either on the forecasting horizon, the out-of-sample periods, or on the two forecasting evaluations statistics.

Our findings can be concluded as follows: (1) There is strong evidence that PO-based predictability model outperforms the constant-model consistently for GDP followed by Consp; and (2) findings in support of the PO-based predictability model for Invst, GovS, and X-M, are dependent either on different forecasting horizons; the two out-of-sample periods (50% and 25%); and the two forecasting evaluation statistics (RTU and OOSR2). Overall, our findings imply that PO has significant predictability power in order to predict aggregate demand proxied using GDP. However, when we disaggregate the components of aggregate demand, we find strong evidence in support of PO as a statistically significant predictor for Consp and to a limited extent for other aggregate demand variables (GovS, Invst, and X-M).
Table 4.
Out-of-sample Evaluations

Here, we report results for two measures of out-of-sample predictability namely relative Theil U (RTU) and out-of-sample R-squared (OOSR2) statistics based on quarterly (Panel A) and monthly dataset (Panel B). The RTU and OOSR2 statistics measures the performance of our predictive regression model vis-à-vis the constant-only model. The out-of-sample period considered are 50% and 25% of the sample. The results are reported for a one-period ($h = 1$), three-period ($h = 3$) and six-period ($h = 6$) forecasting horizons.

Panel A: Quarterly

<table>
<thead>
<tr>
<th>Variables</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.9166</td>
<td>-0.0888</td>
<td>0.7035</td>
<td>-0.2129</td>
<td>0.7715</td>
<td>-0.2242</td>
<td>0.9890</td>
<td>-0.1962</td>
<td>0.7179</td>
<td>-0.1308</td>
<td>0.8376</td>
<td>-0.0416</td>
</tr>
<tr>
<td>Cons</td>
<td>0.7639</td>
<td>0.0383</td>
<td>0.5887</td>
<td>0.0249</td>
<td>0.7394</td>
<td>-0.0397</td>
<td>0.7857</td>
<td>-0.0857</td>
<td>0.5995</td>
<td>0.0399</td>
<td>0.6938</td>
<td>0.1245</td>
</tr>
<tr>
<td>Invst</td>
<td>1.0630</td>
<td>-0.0701</td>
<td>0.7220</td>
<td>-0.1263</td>
<td>0.7949</td>
<td>-0.2079</td>
<td>1.0862</td>
<td>-0.0825</td>
<td>0.7556</td>
<td>-0.0215</td>
<td>0.7925</td>
<td>-0.0018</td>
</tr>
<tr>
<td>GovS</td>
<td>1.0081</td>
<td>-0.7191</td>
<td>0.9631</td>
<td>0.5763</td>
<td>0.6935</td>
<td>0.8786</td>
<td>1.0025</td>
<td>-0.1685</td>
<td>0.9045</td>
<td>0.5462</td>
<td>0.6150</td>
<td>0.8957</td>
</tr>
<tr>
<td>X-M</td>
<td>1.0003</td>
<td>0.0000</td>
<td>1.0027</td>
<td>0.0002</td>
<td>1.0012</td>
<td>0.0006</td>
<td>1.0232</td>
<td>-0.8831</td>
<td>1.0062</td>
<td>-0.1674</td>
<td>1.0222</td>
<td>-1.1641</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.8711</td>
<td>-0.1045</td>
<td>0.7594</td>
<td>-0.1021</td>
<td>0.6886</td>
<td>-0.2786</td>
</tr>
<tr>
<td>Cons</td>
<td>0.8217</td>
<td>-0.0778</td>
<td>0.6842</td>
<td>-0.1748</td>
<td>0.6618</td>
<td>-0.2362</td>
</tr>
<tr>
<td>Invst</td>
<td>1.0383</td>
<td>-0.0882</td>
<td>0.7961</td>
<td>-0.0631</td>
<td>0.7266</td>
<td>-0.1675</td>
</tr>
<tr>
<td>GovS</td>
<td>1.0267</td>
<td>-1.0734</td>
<td>1.0294</td>
<td>-1.1622</td>
<td>0.7821</td>
<td>0.7585</td>
</tr>
<tr>
<td>X-M</td>
<td>0.9968</td>
<td>-0.0005</td>
<td>1.0068</td>
<td>0.0011</td>
<td>1.0047</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

Panel B: Monthly

<table>
<thead>
<tr>
<th>Variables</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
<th>RTU</th>
<th>OOSR2</th>
</tr>
</thead>
<tbody>
<tr>
<td>GDP</td>
<td>0.8711</td>
<td>-0.1045</td>
<td>0.7594</td>
<td>-0.1021</td>
<td>0.6886</td>
<td>-0.2786</td>
<td>0.9732</td>
<td>-0.2134</td>
<td>0.8265</td>
<td>-0.0930</td>
<td>0.7051</td>
<td>-0.1382</td>
</tr>
<tr>
<td>Cons</td>
<td>0.8217</td>
<td>-0.0778</td>
<td>0.6842</td>
<td>-0.1748</td>
<td>0.6618</td>
<td>-0.2362</td>
<td>0.7371</td>
<td>0.0173</td>
<td>0.5432</td>
<td>0.0775</td>
<td>0.5397</td>
<td>0.0094</td>
</tr>
<tr>
<td>Invst</td>
<td>1.0383</td>
<td>-0.0882</td>
<td>0.7961</td>
<td>-0.0631</td>
<td>0.7266</td>
<td>-0.1675</td>
<td>1.0422</td>
<td>-0.0666</td>
<td>0.8135</td>
<td>0.0278</td>
<td>0.7145</td>
<td>0.0152</td>
</tr>
<tr>
<td>GovS</td>
<td>1.0267</td>
<td>-1.0734</td>
<td>1.0294</td>
<td>-1.1622</td>
<td>0.7821</td>
<td>0.7585</td>
<td>1.0154</td>
<td>-0.5417</td>
<td>1.0177</td>
<td>-0.5628</td>
<td>0.7164</td>
<td>0.7288</td>
</tr>
<tr>
<td>X-M</td>
<td>0.9968</td>
<td>-0.0005</td>
<td>1.0068</td>
<td>0.0011</td>
<td>1.0047</td>
<td>0.0003</td>
<td>0.8759</td>
<td>-0.1582</td>
<td>0.8832</td>
<td>-0.2190</td>
<td>0.9545</td>
<td>-0.0278</td>
</tr>
</tbody>
</table>
IV. ROBUSTNESS CHECKS

In this section, we undertake robustness tests. More specifically, we will use adjusted-GDP as a dependent variable in our proposed predictability model depicted by Equation (1). To do so, we have considered three control variables, namely EXR, FDI, and INF to adjust GDP. Our approach includes following three steps. In step one, we estimate the following regression:

\[\text{GDP}_t = \alpha + \gamma \text{Con}_{t-1} + \varphi_t \]

(2)

Here, \(\text{GDP}_t \) denotes Indonesia’s economic growth and \(\text{Con} \) denotes a control variable. Equation (2) is a bivariate model and, therefore, it will be estimated individually for each control variable (EXR, FDI, and INF).

In the second step, we extract the estimated constant, \(\hat{\alpha} \), and the residuals, \(\hat{\varphi} \), from Equation (2). The adjusted-GDP (denoted by \(\text{GDP}^* \)) is then computed as follows:

\[\text{GDP}^* = \hat{\alpha} + \hat{\varphi} \]

(3)

In the final step, our predictability model remains same as Equation (1), however, we will use \(\text{GDP}^* \) instead of \(\text{GDP} \) as the dependent variable. Here, \(\text{GDP}^* \) denotes three GDP-adjusted series, namely \(\text{GDP_EXR} \), \(\text{GDP_FDI} \), and \(\text{GDP_INF} \).

We have considered robustness check for both in-sample and out-of-sample evaluations. Our approach remains the same as discussed in Section III. We begin with reading results for in-sample predictability from Table 5. We find that \(\text{PO} \) is a statistically significant predictor of adjusted-GDP (namely \(\text{GDP_FDI} \) and \(\text{GDP_INF} \)) at \(h = 3 \) when we consider quarterly data. On the other hand, when monthly data is used, \(\text{PO} \) is found to be a statistically significant predictor of three adjusted-GDP series (\(\text{GDP_EXR} \), \(\text{GDP_FDI} \), and \(\text{GDP_INF} \)) at \(h = 6 \). Overall, we conclude that our findings remain unchanged irrespective of the \(\text{GDP} \) series used for predictability. In other words, our results imply that \(\text{PO} \) is a statistically significant predictor of \(\text{GDP} \) (adjusted-GDP) at \(h = 3 \) and \(h = 6 \), when we use data at quarterly and monthly frequencies, respectively.

Finally, in unreported results, we also undertake a robustness test for different out-of-sample periods. The main conclusions do not change. Tabulated results are available upon request.
Table 5. Robustness Check for in-sample Predictability Test

In this table, we report in-sample predictability test results for adjusted-GDP. We have used three control variables, namely Exchange Rate (EXR), Foreign Direct Investment (FDI), and Inflation Rate (INF) to adjust GDP. Our approach includes following two steps. First, we estimate the following regression model: \(GDP_t = \alpha + \gamma Con_{t-1} + \varphi_t \). Here, GDP denotes percentage change in real GDP and \(Con \) denotes control variable. Second, we extract constant, \(\alpha \) and residual, \(\varphi_t \), from estimated model and the sum of \(\alpha \) and \(\varphi_t \) provides us with adjusted-GDP. Given, we have three control variables, we conduct this approach three times for each control variable and obtain three adjusted-GDP series, namely GDP_EXR, GDP_FDI, and GDP_INF. Finally, we estimate our predictability model using these adjusted-GDP series. Finally, *, **, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively.

<table>
<thead>
<tr>
<th>Panel A: Quarterly</th>
<th>Panel B: Monthly</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(h = 1)</td>
</tr>
<tr>
<td>Variables</td>
<td>coefficient</td>
</tr>
<tr>
<td>GDP_EXR</td>
<td>0.3190***</td>
</tr>
<tr>
<td>GDP_FDI</td>
<td>0.1309</td>
</tr>
<tr>
<td>GDP_INF</td>
<td>0.2562</td>
</tr>
<tr>
<td>GDP_EXR</td>
<td>-0.0408</td>
</tr>
<tr>
<td>GDP_FDI</td>
<td>-0.1739</td>
</tr>
<tr>
<td>GDP_INF</td>
<td>0.3622</td>
</tr>
</tbody>
</table>

V. IMPLICATIONS OF OUR FINDINGS

One aspect of our work that we would like to draw attention to is the role that the current COVID-19 pandemic is playing in influencing both the financial and economic systems globally. There is an emerging literature on this; see Ali, Alam, and Rizvi (2020); Fu and Shen (2020); Qin, Zhang, and Su (2020); Iyke (2020a,b); Gu, Ying, Zhang, and Tao (2020); Haroon and Rizvi (2020a, b); He, Sun, Zhang, and Li (2020); He, Niu, Sun, and Li (2020); Liu, Sun, and Zhang (2020); C.T. and Prabheesh (2020); Chen, Liu, and Zhao (2020); Mishra, Rath, and Das (2020); Ming, Zhou, Ai, Bi, and Zhong (2020); Phan and Narayan (2020); Salisu and Akanni (2020); Shen, Fu, Pan, Yu, and Chen (2020); Wang, Zhang, and Fu (2020); Yue, Korkmaz, and Zhou (2020); Yu, Xiao, and Li (2020); Liu, Pan, and Yin (2020); Qin, Huang, Shen, and Fu (2020); and Xiong, Wu, Hou, and Zhang (2020); and Zhang, Hu, and Ji (2020).
A subset of this literature has shown that oil prices due to COVID-19 have created financial and economic market uncertainties. These uncertainties are likely to have implications for forecasting macroeconomic time-series data. Our study does not consider the effects of COVID-19 in predicting aggregate demand for Indonesia. Future studies should use the above-mentioned studies as a benchmark to explore the implications of forecasting models, including the performance of the WN estimator when faced by a shock such as COVID-19.

VI. CONCLUSION
This study undertakes an in-sample and out-of-sample predictability analysis of aggregate demand (real GDP) and its four components (namely Consp, Invst, GovS, and X-M) based on PO. Our data for Indonesia cover the 2008 to 2019 period. We unveil the following findings. First, we show that PO is a statistically significant predictor of GDP. However, our results are dependent on different forecasting horizons and different data frequencies. More specifically, when we use data at quarterly frequency, PO significantly predicts GDP at $h = 3$, whereas at monthly frequencies, the significant evidence of predictability is observed at $h = 6$. Additionally, we use two out-of-sample evaluation statistics, OOSR2 and RTU and document that the PO-based predictability model outperforms the benchmark constant-only model using RTU statistics; however, the same cannot be concluded using OOSR2 statistics.

In addition, we examine whether the four components of aggregate demand are predictable using PO. Overall, we document strong evidence of predictability in the case of Consp compared to Invst, GovS, and X-M. This finding implies that Consp plays a major role in moving aggregate demand with respect to PO.

REFERENCES

