Bulletin of Monetary Economics and Banking, Vol. 22, No. 2 (2019), pp. 137 - 162
MONETARY POLICY TRANSMISSION AND CREDIT CARDS:
EVIDENCE FROM INDONESIA
K.P. Prabheesh1, R. Eki Rahman2
1Indian Institute of Technology Hyderabad, Hyderabad, India. Email: prabheeshkp@gmail.com
2Bank Indonesia Institute, Bank Indonesia. Email: eki.r@bi.go.id
ABSTRACT
This paper empirically tests the dynamics of credit cards and monetary policy in the context of Indonesia. Using monthly data from 2006 to 2018 and a structural vector autoregressive model, our findings indicate that credit card usage is mainly driven by Indonesia’s fast economic growth over the last decade, which indeed reflects the role of credit cards in consumption smoothing. The study also finds that monetary policy transmission through the lending channel is weak, with a more prevalent role for exchange rates and global oil prices in the transmission process.
Keywords: Monetary policy; Structural vector autoregression; Credit cards.
JEL Classification: E44; E50.
Article history: |
|
Received |
: February 20, 2019 |
Revised |
: March 30, 2019 |
Accepted |
: June 13, 2019 |
Available online : July 30, 2019
https://doi.org/10.21098/bemp.v22i2.1039
138 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
I. INTRODUCTION
Technology has digitized monetary transactions across the world, including payment mechanisms such as debit and credit cards and online payments. These paymentmechanismshavevariousbenefits,suchastheirsmoothness,transparency, speed, and efficiency. However, digitized transactions also pose many challenges to policymakers. One such challenge is the smooth implementation of monetary policy. In this paper, we explore possible interactions between credit card usage and monetary policy in the Indonesian context.
Indonesia, one of the growing emerging economies in the world, has experienced a considerable rise in credit card usage over the past decade.1 Figure 1 shows that the volume of credit card transactions increased significantly, from 113 million to 338 million during
The remainder of the paper is organized as follows. Section II reviews the literature and presents the hypotheses and methodology. Sections III and IV discuss the econometric framework and data, respectively. Section V presents the empirical findings and Section VI concludes the paper.
1Credit card ownership is low in Indonesia compared to other emerging economies. According to the Global Findex database (World Bank, 2017), credit card ownership in Indonesia among people above the age of 15 was around 2% in 2017 compared to India (3%), China (31%), Brazil (21%), and Malaysia (21%).
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
139 |
|
|
Figure 1. Usage of Credit Card
The figure presents trends in credit card transactions in Indonesia. Value of transactions are reported in IDR trillion, whereas volume of transactions are reported in millions. The data come from CEIC and Bank Indonesia website.
400 |
|
|
|
|
Value of Transactions (IDR Trillion) |
|
|
Volume of Transactions (In Million) |
|
|
||||||
|
|
|
|
|
|
|
|
|||||||||
350 |
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2006 |
2007 |
2008 |
2009 |
2010 |
2011 |
2012 |
2013 |
2014 |
2015 |
2016 |
2017 |
2018 |
Figure 2. Growth of Credit Card transactions (CAGR, in percentages)
The figure represents the compound annual growth of volume and value of credit card transactions in Indonesia for two
30
25
20
15
10
5
0
Volume of Transactions |
Value of Transactions |
140 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
Figure 3. Usage of Credit Card for Purchase and Cash Withdrawal
The figure represents the proportion of credit card usage (value of transactions) in terms of purchase and cash withdrawal. The values are represented in percentages for two years, i.e., 2006 and 2018, and data come from CEIC and Bank Indonesia website.
2006 |
2018 |
3%
6%
94% |
|
|
|
|
97% |
|
|
Cash Withdrawal |
|
Purchase |
|
Cash Withdrawal |
|
|
Purchase |
|
|
|
|||||
|
II.LITERATURE REVIEW, HYPOTHESES, AND METHODOLOGY
According to Fulford and Schuh (2018), the availability of credit cards helps individuals make three important decisions: First, credit cards help smooth their consumption when their income drops; hence, it is considered as an instrument to meet the precautionary and liquidity needs. Second, they can be used to revolve debt over the short and long term, and credit cards are thus a way of allocating life cycle consumption. Finally, as a means of payment, the amount spent with credit cards comprises part of consumer expenditures. Therefore, the economic implications of credit cards become more broader as their usage increases.
The literature on credit cards, especially related to monetary policy, generally focuses on the following: 1) the role of central banks in digital money and their independence in terms of monetary policy and 2) the implications of credit cards on monetary policy transmission. Regarding the first focus, studies suggest that the substitution of money with any alternative payment option, such as credit cards, debit cards, and digital currencies, reduces the overall demand for money in the economy (Akhand and Milbourne, 1986; Yilmazkuday and Yazgan, 2011). The usage of credit cards reduces the demand for money for transaction purposes, since they can be used as a medium of exchange in the transactions (Mandell, 1972). Hence, the traditional approach of implementing a monetary policy based on changing the monetary base might not be effective; for instance, the possibilities of raising seigniorage (income from printing money) using monetary policy would be limited. Therefore, central banks could be forced to depend on governmental financial support for their operational needs, thus affecting the independence of their monetary policy (Friedman, 1999; Freedman, 2000; Goodhart, 2000; Woodford, 2000).
Regarding the second focus, credit cards and monetary transmission, various challenges are posed by credit cards in the implementation of monetary policy. The usage of credit cards doubles the velocity of money, since the cash proceeds
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
141 |
|
|
from the sale of goods can be reused to pay the debt on credit card purchases. Theoretically, the velocity of money is inversely proportional to the demand for money, and hence lower demand for money due to credit card usage increases the velocity of money (Geanakoplos and Dubey, 2010). A high level of money velocity increases inflation, which can deviate from the central bank’s inflation target. Similarly, the lower demand for money reduces the demand for central bank’s reserves, which in turn shrinks the central bank’s balance sheet. The lower demand thus reduces the central bank’s ability to influence the
It is also argued that inflation in the United States in the 1970s and early 1980s coincided with the introduction of credit cards (Geanakoplos and Dubey, 2010). Credit card usage can stimulate spending, since consumers underestimate or forget credit card purchases, because the act of paying by credit card is less painful than paying by cash or check (Soman, 2001). Moreover, the interest rates charged on credit cards are sticky and do not change with monetary policy, which complicates the implications of monetary policy through the credit card channel (Calem and Mester, 1995). If credit card interest rates were elastic in response to changes in the policy rate, monetary policy would have a multiplier effect on the consumption level through the availability of credit card funds. Further, Yilmazkuday (2011) argues that a contractionary monetary policy forces commercial banks to restrict lending through credit cards, and the credit (or lending) channel of monetary policy transmission would therefore be more effective in the presence of credit cards, compared to other channels of monetary transmission, such as the interest and exchange rates. Moreover, external risk factors, such as fluctuations in oil price and exchange rates, further complicate the mechanism of monetary transmission. Hence, it would be interesting to analyze the role of credit cards in monetary policy transmission, along with other global risk factors, such as exchange rates and oil price shocks.
Given this background, this paper examines the following questions in the context of Indonesia: 1) Does credit card usage play any role in the transmission of monetary policy? 2) Is the prevalence of the lending channel in the transmission of monetary policy due to credit card usage, as compared to other channels? 3) Does credit card play a
142 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
In this paper, we hypothesize the following: 1) Credit card usage reduces the effectiveness of monetary policy transmission because it raises price levels due to the high velocity of money (Friedman, 1999, 2000), and 2) credit card usage is positively affected by income levels, since higher income or output encourages consumers to spend more on consumption with credit cards and hence supports the
Our approach to testing the above interlinkage is as follows. We use monthly data from 2006 to 2018 and an SVAR model. We use impulse response function analysis and forecast error variance to analyze monetary transmission. Further, the analysis includes commercial bank lending, to account for the lending channel of monetary policy. Accordingly, monetary policy actions affect the lending capacity of commercial banks and thus affect monetary policy targets. Similarly, we also incorporate exchange rates and global oil prices into the analysis to account for external shocks. Our empirical findings suggest the following. First, credit card usage is significantly explained by output, indicating the
III. ECONOMETRIC FRAMEWORK
This paper employs an SVAR model to analyze the dynamics of credit card usage and monetary policy.3 The SVAR model is an alternative to the simultaneous equation models originally proposed by Sims (1980). A standard SVAR model can be written as
(1)
2The level of income is an important indicator of consumers’ repayment patterns. Households with highly liquid assets or income are more likely to use credit cards for transactions and pay their credit card debt on time (Canner and Cyrnak, 1985; Zhang and DeVaney, 1999).
3Most of the studies that analyze the monetary policy transmission mechanism use SVAR models, due to their dynamic nature, compared to other econometric techniques. For a survey on the use of SVAR models of the monetary transmission mechanism, see Christiano et al. (1999).
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
143 |
|
|
where Xt is an n×1 vector of variables at time t, A0 and B are n×n matrixes of
coefficients, indicates the matrix polynomial in the lag operator, the matrix B contains the structural form parameter of the model, and εt is an n×1 vector of serially uncorrelated and
covariance matrix = I. The reduced form of the model can be expressed as
|
|
|
|
(2) |
where |
|
|
, with A0 |
ut=Bt. |
|
||||
The residuals ut |
from the reduced vector autoregressive model are also |
assumed to be white noise, but can be correlated with each other due to the
contemporaneous effect of the variables across equations. Therefore, to identify structural shocks, we must impose restrictions in the equation. We employ an identification strategy applying
To address the research issue, we estimate three separate SVAR models.4 In model 1, we include four variables in the SVAR system, that is, output, inflation, credit card transactions, and the domestic policy interest rate.
The identification strategies for model 1 are as follows:
Xt = (Output, Inflation, Credit, Interest rate)
(3)
where output is assumed to be contemporaneously exogenous to the other variables in the system, since the SVAR literature on monetary policy indicates that real variables, such as output, respond with a lag to the exogenous shocks of monetary variables (Sims, 2007; Abouwafia and Chambers, 2015). Similarly, inflation is also assumed to be contemporaneously exogenous to credit card transactions and interest rates, due to the delay in changes in prices (Friedman, 1961). We also assume that credit card transactions (credit) do not respond contemporaneously to changes in the interest rate, due to the sticky nature of interest rate charged on credit card (Calem and Mester, 1995). Finally, the policy rate (interest rate) is contemporaneously exogenous to output, since information related to output would not be available to the policy makers the same month, and the interest rate is therefore only set after the output information from the previous month has been observed (Leigh, 2005).
4We closely follow the SVAR approach of Prabheesh and Vidya (2018).
144 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
In model 2, we expand the above model by including information related to commercial banks’ lending and exchange rates.5 The inclusion of these variables will help us to identify the interaction of the credit card effect on monetary policy transmission through lending and the exchange rate channel.
The identification strategies for model 2 are as follows:
Xt = (Output, Inflation, Credit, Lending, Interest rate, Exchange rate)
(4)
where we assume commercial bank lending does not respond contemporaneously to the interest rate, since they do not change lending rates quickly in response to monetary policy changes, and lending thus changes with a lag. However, exchange rate is contemporaneously endogenous to all the other variables in the system, since they respond quickly to changes in real variables as well as monetary variables in the system.
Finally, in model 3, we incorporate global oil prices to account for global supply shocks, since increases in oil prices can increase the cost of production and thus lead to higher price levels (Narayan et al., 2014; Besnet and Upadhyaya, 2015). Hence, the central bank is assumed to react to global oil price movements by changing the policy rate. In this case, we assume oil prices are contemporaneously exogenous to all the other factors in the system. The identification strategies for model 3 are as follows:
Xt = (Oil, Output, Inflation, Credit, Interest rate, Exchange rate)6
(5)
5The incorporation of inflation and exchange rate also helps address
Iyke (2019) to address the effect of monetary transmission on financial conditions in Indonesia.
6To maintain degrees of freedom, we do not include commercial bank lending in model 3.
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
145 |
|
|
We use structural variance decomposition and structural impulse response functions to examine the dynamics of the variables in the SVAR system. Impulse response functions are helpful for analyzing the response of one variable to a shock to the other variables in the system. Variance decomposition assesses the percentage of forecast error explained by the innovation of each variable in the system.
IV. DATA
The study utilizes monthly data from January 2006 to December 2018, collected from various BI reports. The beginning period is attributed to the availability of data related to credit card transactions in Indonesia. The policy interest rate is proxied by the BI rate, which is an indicator of the monetary policy stance. The industrial production index is taken as a measure of output, due to the unavailability of monthly output data. Credit card usage is measured in real terms (i.e., the total value of credit card transactions divided by the Consumer Price Index), and inflation is measured as the percentage change in the Consumer Price Index corresponding to its previous year same month. Moreover, the industrial production index, credit card transactions, and bank lending are measured in percentage changes, seasonally adjusted using the Census Bureau’s
Table 1.
Descriptive Statistics
This table presents descriptive statistics for the period
Variables |
Mean |
Std. Dev. |
Skewness |
Kurtosis |
|
Output |
4.15 |
3.95 |
4.98 |
28.40(0.00) |
|
Inflation |
5.48 |
2.25 |
0.99 |
3.60 |
25.76 (0.00) |
Credit |
15.90 |
14.60 |
1.11 |
3.86 |
34.17 (0.00) |
Lending |
11.50 |
6.29 |
0.13 |
1.62 |
11.71(0.00) |
Interest Rate |
6.70 |
1.32 |
2.40 |
2.10 (0.34) |
|
Exchange Rate |
11136.5 |
2023.2 |
0.28 |
1.50 |
15.32 (0.00) |
Oil |
6.57 |
36.50 |
0.32 |
2.91 |
2.56 (0.276) |
7We follow an approach similar to that of Yilmazkuday (2011).
8See https://www.eia.gov.
146 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
V. EMPIRICAL RESULTS
As a first step, we examined the stationarity properties of the variables. Since standard unit root tests, such as the augmented
Table 2.
Structural Break Unit Root Test
This table shows the Narayan and Popp (2010) unit root test results for monthly data. We refer to Table 3 of Narayan and Popp (2010) for critical values for unknown break dates. Models 1 and 2 are two models for testing unit root. Model 1 (see Column 2, denoted M1) allows for two breaks in intercept and the Model 2 allows for two breaks in intercept as well as trend (see Column 2, denoted M2). The true break dates are denoted by TB1 and TB2; k represents the optimal lag length; and ***, **, and * indicate that the unit root null hypothesis is rejected at the 1%, 5%, and 10% levels of significance, respectively. In in the break date, for example 2011M8 denotes month. Similarly, output, credit, lending and oil denote growth rate of the index of industrial production, credit card transactions, commercial banks’ lending, and oil prices, respectively.
M1: Two Breaks in Intercept |
|
M2: Two Breaks in Intercept and Trend |
|||||||
Variables |
k |
TB1 |
TB2 |
Lag |
TB1 |
TB2 |
|||
Output |
0 |
2011M8 |
2012M1 |
0 |
2011M8 |
2012M2 |
|||
|
|
|
|
|
|
|
|||
Inflation |
4 |
2013M6 |
2014M12 |
4 |
2013M6 |
2014M12 |
|||
|
|
|
|
|
|
|
|||
Credit |
2 |
2010M1 |
2011M6 |
3 |
2010M1 |
2010M6 |
|||
|
|
|
|
|
|
|
|||
Lending |
4 |
2009M8 |
2011M11 |
2 |
2011M11 |
2010M6 |
|||
|
|
|
|
|
|
|
|||
Interest Rate |
4 |
2009M9 |
2009M11 |
4 |
2009M9 |
2009M11 |
|||
|
|
|
|
|
|
|
|||
Exchange Rate |
4 |
2013M10 |
2015M9 |
4 |
2013M10 |
2015M9 |
|||
|
|
|
|
|
|
|
|||
Oil |
4 |
2009M9 |
2010M9 |
4 |
2009M9 |
2010M9 |
|||
|
|
|
|
|
|
|
|||
Critical Values for Unit root test |
|
1% |
|
5% |
|
10% |
|||
Model M1 (Break in Intercept only) |
|
|
|
- 3.825 |
|||||
|
|
|
|
||||||
Model M2 (Break in Intercept and |
|
|
|
||||||
Trend) |
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
147 |
|
|
To perform the SVAR test, we convert the exchange rate into first differences to ensure stationary variable levels. The optional lag length for vector autoregression is then determined through the
A. Estimation of Model 1
The impulse response function for the SVAR system is depicted in Figure 4. The dashed lines correspond to plus or minus two standard errors around the impulse responses. It is evident from Figure 4 that the interest rate significantly and positively responds to a positive shock on inflation, and the response is statistically significant for up to four months. This finding is not surprising, since BI adheres to an
It is also interesting to note that inflation responds positively to increase in credit card transactions. The rise in inflation can be attributed to the higher velocity of money with the use of credit cards. Similarly, the response of credit cards to output is positive and significant. The significant effect of output on credit card usage indicates that consumers use credit cards for transactions or purchases when their incomes increase. This finding underscores the role of credit cards in consumption smoothing among
Table 3 reports the variance decomposition results. It reveals that variations in output are largely driven by variation in the output itself (94% in the 10th month). Similarly, variations in inflation are largely explained by inflation’s own variations, that is, around 84% in the 10th month, whereas the contributions of output and the interest rate to inflation are found to be 0.8% and 9.6%, respectively. Importantly, output explains around 38% of the variation in credit card transactions in the 10th month, further shedding light on the role of the rapid economic growth in Indonesia over the last decade on credit card usage. Similarly, around 15% of the variation in interest rates is explained by inflation.
The key findings of the analysis can be summarized as follows:
1.Inflation significantly explains the variations in interest rate, reflecting the central bank’s monetary policy response to price stability.
2.Credit card transactions marginally explain variations in inflation.
148 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
3.Output significantly explains variations in credit card transactions, indicating the role of credit cards in consumption smoothing.
4.The impact of the policy rate on inflation is not statistically significant, indicating the weak transmission of monetary policy through the lending channel.
Table 3.
Variance Decomposition of Forecasted Variables (Model 1)
This table shows the variance decomposition of Model 1 estimated using the SVAR methodology. These decompositions show the proportion of the variance in the forecast error of a variable that can be attributable to its own innovations and innovations in other variable in the VAR system. Here, output and credit denote growth rate of the index of industrial production and credit card transactions, respectively.
Period |
Output |
Inflation |
Credit |
Interest Rate |
|
Panel A: Variance Decomposition of Output |
|
||
1 |
99.99 |
0.00 |
0.00 |
0.01 |
5 |
94.38 |
4.31 |
0.79 |
0.52 |
10 |
93.89 |
4.68 |
0.90 |
0.53 |
|
Panel B: Variance Decomposition of Inflation |
|
||
1 |
0.01 |
92.25 |
0.23 |
7.51 |
5 |
0.77 |
83.82 |
5.84 |
9.57 |
10 |
0.83 |
83.68 |
5.86 |
9.63 |
|
Panel C: Variance Decomposition of Credit |
|
||
1 |
0.72 |
0.00 |
99.26 |
0.02 |
5 |
36.50 |
1.56 |
60.27 |
1.67 |
10 |
38.04 |
1.98 |
58.34 |
1.64 |
|
Panel D: Variance Decomposition of Interest Rate |
|
||
1 |
0.00 |
0.00 |
0.00 |
100.00 |
5 |
0.50 |
14.76 |
0.90 |
83.84 |
10 |
0.67 |
15.06 |
0.92 |
83.34 |
Figure 4. Impulse Response Function (Model 1)
This figure represents the impulse response functions derived from the SVAR model (Model 1). The impulse response function traces the effect of a one standard deviation shock to one of the variables on current and future values of all the endogenous variables in the VAR system. Dashed lines represent the intervals of two standard deviations, while the solid lines represent the impulse function.
6 |
|
Response of Output to Interest Rate |
|
|
6 |
|||||
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
|
4 |
2 |
|
|
|
|
|
|
|
|
|
2 |
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
|
Response of Output to Output
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
149 |
|
|
|
|
Figure 4. Impulse Response Function (Model 1) (Continued) |
|
|
|
||||||||||||||
6 |
|
|
Response of Output to Credit |
|
|
|
6 |
|
|
Response of Output to Inflation |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
1 |
||||||||||||||||||
.8 |
|
Response of Inflation to Interest Rate |
|
|
.8 |
|
|
Response of Inflation to Output |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
|
.6 |
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
|
Response of Inflation to Credit |
|
|
|
.8 |
|
|
Response of Inflation to Inflation |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
|
.6 |
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
8 |
|
Response of Credit to Interest Rate |
|
|
|
8 |
|
|
Response of Credit to Output |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
8 |
|
|
Response of Credit to Credit |
|
|
|
8 |
|
|
Response of Credit to Inflation |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
150 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
Figure 4. Impulse Response Function (Model 1) (Continued)
.15 |
|
Response of Interest Rate to Interesr Rate |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.10 |
|
|
|
|
|
|
|
|
|
.05 |
|
|
|
|
|
|
|
|
|
.00 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.15 |
Response of Interest Rate to Credit |
|
.10
.05
.00
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.15 |
|
Response of Interest Rate to Output |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.10 |
|
|
|
|
|
|
|
|
|
.05 |
|
|
|
|
|
|
|
|
|
.00 |
|
|
|
|
|
|
|
|
|
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
1 |
.15 |
|
Response of Interest Rate to Inflation |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.10 |
|
|
|
|
|
|
|
|
|
.05 |
|
|
|
|
|
|
|
|
|
.00 |
|
|
|
|
|
|
|
|
|
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
1 |
B. Estimation of Model 2
Figure 5 shows additional insights on the dynamics of monetary policy and credit card usage when taking to account exchange rates and commercial bank lending. It is interesting to note that the response of the interest rate to inflation is positive and statistically significant. This finding again indicates the central bank’s reactions to inflation, which is consistent with BI’s
The impulse response functions of credit cards show that credit card usage is positively and significantly affected by output and lending. These findings reiterate the role of income and commercial bank lending in determining credit card usage. Inflation responds positively and significantly to variations in the exchange rate, indicating that the depreciation of domestic currency leads to higher inflation. This result underscores the role of external shocks in determining inflation in Indonesia. Unlike in the previous section, the response of inflation to credit card usage is not found to be significant here. However, the response of inflation to the interest rate is also insignificant, which is consistent with the findings in the previous section. Output is again found to not be responsive to any of the variables in the system, except its own variations.
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
151 |
|
|
The variance decomposition results reported in Table 4 further show that the exchange rate explains around 15% of the variations in inflation and 17% of the variations in bank lending. Output and lending explain 36% and 10% variations in credit card usage, respectively. Similarly, inflation explains 12.9% of the change in interest rate, but the interest rate explains only 4.5% of the variation in inflation. Similarly, variations in output are largely explained by their own variations, suggesting stable output during the study period.
The key results can be summarized as follows:
1.The exchange rate significantly explains variations in inflation, indicating international shocks pass through to domestic inflation.
2.Taking into account the exchange rate, the effect of credit card usage on inflation is found to be nonsignificant.
3.The exchange rate significantly explains commercial banks’ lending, indicating the liquidity stress banks face during exchange rate depreciation.
4.Output significantly explains variations in credit card usage, indicating the
5.Monetary policy transmission is found to be more prevalent through the exchange rate than through the lending channel.
Figure 5.
Impulse Response Function (Model 2)
This figure represents the impulse response functions derived from the SVAR model (Model 2). The impulse response function traces the effect of a one standard deviation shock to one of the variables on current and future values of all the endogenous variables in the VAR system. Dashed lines represent the intervals of two standard deviations, while the solid lines represent the impulse function.
Response to Structural One S.D. Innovations ± 2 S.E.
Response of Output to Inflation |
Response of Output to Credit |
4 |
4 |
2 |
2 |
0 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
|
|
|
Response of Output to Lending |
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Output to Interest Rate
4 |
|
|
|
|
|
|
|
|
4 |
2 |
|
|
|
|
|
|
|
|
2 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
152 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
Figure 5.
Impulse Response Function (Model 2) (Continued)
Response of Output to Exchange Rate
4 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
Resposne of Inflation to Output |
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
.6 |
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
|
Response of Inflation to Credit |
|
|
.8 |
|||
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
.6 |
.4 |
|
|
|
|
|
|
|
|
.4 |
.2 |
|
|
|
|
|
|
|
|
.2 |
.0 |
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
Response of Inflation to Exchange Rate |
|
.8 |
|||||
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
.6 |
.4 |
|
|
|
|
|
|
|
|
.4 |
.2 |
|
|
|
|
|
|
|
|
.2 |
.0 |
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
8 |
|
|
Response of Credit to Output |
|
|
8 |
|||
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
4 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
8 |
|
|
Response of Credit to Lending |
|
|
8 |
|||
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
4 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Inflation to Lending
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Inflation to Interest Rate
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Credit to Inflation
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Resposnse of Credit to Interest Rate
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
153 |
|
|
Figure 5.
Impulse Response Function (Model 2) (Continued)
8 |
Response of Credit to Exchange Rate |
|
|
4 |
|
0 |
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1.5 |
|
|
Response of Lending to Inflation |
|
|
||||
|
|
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1.5 |
|
Response of Lending to Interest Rate |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Output |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Credit |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1.5 |
|
|
Response of Lending to Output |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1.5 |
|
|
Response of Lending to Credit |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1.5 |
|
Response of Lending to Exchange Rate |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
1.0 |
|
|
|
|
|
|
|
|
|
0.5 |
|
|
|
|
|
|
|
|
|
0.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Inflation |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Lending |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
|
1 |
10 |
154 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
|
|
|
|
|
|
|
|
|
Figure 5. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Impulse Response Function (Model 2) (Continued) |
|
|
|
|
|||||||||||
.2 |
|
Response of Interest Rate to Exchange Rate |
|
400 |
|
|
Response of Exchange Rate to Ouput |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||||||||||
400 |
|
Response of Exchange Rate to Inflation |
|
400 |
|
|
Response of Exchange Rate to Credit |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
300 |
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
400 |
|
Response of Exchange Rate to Interest Rate |
|
400 |
|
|
Response of Exchange Rate to Lending |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
300 |
|
|
|
|
|
|
|
|
300 |
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
100 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
155 |
|
|
Table 4.
Variance Decomposition of Forecasted Variables (Model 2)
This table shows the variance decomposition of Model 2 estimated using the SVAR methodology. These decompositions show the proportion of the variance in the forecast error of a variable that can be attributable to its own innovations and innovations in other variable in the VAR system. The variables, namely output, credit, lending and oil denote the growth rate of the index of industrial production, credit card transactions, commercial banks’ lending and oil prices, respectively.
Period |
Output |
Inflation |
Credit |
Lending |
Interest |
Exchange Rate |
|
Rate |
|||||||
|
|
|
|
|
|
||
|
|
Panel A: Variance Decomposition of Output |
|
||||
1 |
98.07 |
0.00 |
0.00 |
0.69 |
1.22 |
0.00 |
|
5 |
90.07 |
2.81 |
1.06 |
2.40 |
1.89 |
1.73 |
|
10 |
85.96 |
3.23 |
2.34 |
2.56 |
2.92 |
2.95 |
|
|
|
Panel B: Variance Decomposition of Inflation |
|
||||
1 |
0.05 |
93.10 |
1.15 |
2.25 |
3.42 |
0.00 |
|
5 |
2.64 |
81.31 |
2.02 |
1.86 |
3.93 |
8.21 |
|
10 |
2.76 |
75.42 |
2.10 |
1.98 |
4.59 |
15.12 |
|
|
|
Panel C: Variance Decomposition of Credit |
|
||||
1 |
0.18 |
0.00 |
94.87 |
4.94 |
0.00 |
0.00 |
|
5 |
36.96 |
2.04 |
43.54 |
9.21 |
4.530 |
3.68 |
|
10 |
36.52 |
1.99 |
40.95 |
10.44 |
5.78 |
4.28 |
|
|
|
Panel D: Variance Decomposition of Lending |
|
||||
1 |
0.00 |
0.00 |
0.00 |
99.97 |
0.02 |
0.00 |
|
5 |
2.77 |
5.33 |
13.50 |
61.02 |
3.36 |
13.99 |
|
10 |
4.32 |
5.12 |
13.43 |
53.79 |
5.93 |
17.38 |
|
|
Panel E: Variance Decomposition of Interest Rate |
|
|||||
1 |
0.00 |
0.00 |
0.00 |
0.00 |
100.00 |
0.00 |
|
5 |
3.13 |
11.47 |
0.73 |
1.49 |
80.52 |
2.63 |
|
10 |
4.93 |
12.99 |
0.79 |
1.48 |
75.36 |
4.43 |
|
|
Panel F: Variance Decomposition of Exchange Rate |
|
|||||
1 |
0.01 |
0.65 |
6.16 |
2.75 |
0.02 |
90.38 |
|
5 |
5.53 |
3.92 |
5.36 |
3.91 |
5.48 |
75.77 |
|
10 |
6.80 |
5.52 |
5.18 |
3.69 |
7.04 |
71.75 |
C. Estimation of Model 3
Since we have seen, in the previous section, the greater role of international shock
9Due to the decline in oil production, Indonesia suspended its OPEC membership in 2008. It reactivated it in 2016 but suspended it again in 2018 (OPEC, 2019).
156 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
interesting to see that the response of the exchange rate to oil prices is also positive and statistically significant, which implies that an increase in oil prices in the world market depreciates the domestic currency. Since Indonesia is a net importer of oil, an increase in oil prices in the international market would induce a high current account deficit, leading to high demand for foreign currency and depreciation of the domestic currency.
The response of inflation to the exchange rate is also found to be positive and significant, indicating that depreciation of the domestic currency leads to inflation, again emphasizing the relevance of the exchange rate channel in monetary policy transmission. The domestic interest rate can also be seen to respond positively to oil prices, indicating that the central bank accounts for oil price dynamics when framing monetary policy. Moreover, oil prices are found to be unaffected by any of the domestic variables in the system, underscoring their exogeneity. The remainder of the findings, especially related to credit cards, is consistent with those in the previous section.
The variance decomposition results shown in Table 5 reveal that around 14% of the variation in inflation is explained by oil prices, emphasizing the role of global oil price
4.This finding shows that the inclusion of oil prices in the model decreases the role of the exchange rate in explaining inflation. In other words, once the source of external shock is accommodated for in the model through oil prices, the role of the mediator variable, that is, the exchange rate, is moderated. We can also see that oil prices explain around 7% of the variation in the exchange rate.
The key findings from this section can be summarized as follows:
1.Oil prices significantly explain variations in inflation, indicating the international shock
2.The inclusion of oil prices in the model moderates the effect of the exchange rate on inflation.
3.Oil prices significantly explain the policy rate, indicating that the central bank accommodates oil
Figure 6.
Impulse Response Function (Model 3)
This figure represents the impulse response functions derived from the SVAR model (Model 3). The impulse response function traces the effect of a one standard deviation shock to one of the variables on current and future values of all the endogenous variables in the VAR system. Dashed lines represent the intervals of two standard deviations, while the solid lines represent the impulse function.
Response to Structural One S.D. Innovations ± 2 S.E.
30 |
|
|
Response of Oil to Output |
|
|
30 |
|||
|
|
|
|
|
|
|
|
||
20 |
|
|
|
|
|
|
|
|
20 |
10 |
|
|
|
|
|
|
|
|
10 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Oil to Inflation
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
157 |
|
|
|
|
|
|
|
|
|
|
|
Figure 6. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Impulse Response Function (Model 3) (Continued) |
|
|
|
|
|||||||||||
30 |
|
|
Response of Oil to Credit |
|
|
30 |
|
|
Response of Oil to Exchange Rate |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
20 |
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||||||||||
30 |
|
|
Response of Oil to Interest Rate |
|
|
|
|
|
|
Response of Output to Oil |
|
|
|
||||||
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Output to Inflation |
Response of Output to Credit |
4 |
|
|
|
|
|
|
|
|
4 |
2 |
|
|
|
|
|
|
|
|
2 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Output to Exchange Rate |
Response of Output to Interest Rate |
4 |
|
|
|
|
|
|
|
|
4 |
2 |
|
|
|
|
|
|
|
|
2 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
|
Response of Inflation to Oil |
|
|
.8 |
|||
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
.6 |
.4 |
|
|
|
|
|
|
|
|
.4 |
.2 |
|
|
|
|
|
|
|
|
.2 |
.0 |
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Inflation to Output
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
158 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
|
|
|
|
|
|
|
|
|
Figure 6. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Impulse Response Function (Model 3) (Continued) |
|
|
|
|
|||||||||||
.8 |
|
|
Response of Inflation to Credit |
|
|
.8 |
|
|
Response of Inflation to Exchange Rate |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
.6 |
|
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.8 |
|
Response of Inflation to Interest Rate |
|
8 |
|
|
|
Response of Credit to Oil |
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
.6 |
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.4 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
.2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||||||||||
8 |
|
|
Response of Credit to Output |
|
|
8 |
|
|
|
Response of Credit to Inflation |
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
|
|
|
|
|
|
|
|
|
|
||
1 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||||||||
8 |
|
Response of Credit to Exchange Rate |
|
8 |
|
|
Response of Credit to Interest Rate |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
4 |
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
|
Response of Interest Rate to Oil |
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Output |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
159 |
|
|
Figure 6.
Impulse Response Function (Model 3) (Continued)
.2 |
|
Response of Interest Rate to Inflation |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
Response of Interest Rate to Exchange Rate |
|
|
|||||
|
|
|
|
|
|
|
|
|
|
.1 |
|
|
|
|
|
|
|
|
|
.0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
.2 |
|
|
Response of Interest Rate to Credit |
|
|
400 |
|||||
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
300 |
.1 |
|
|
|
|
|
|
|
|
|
|
200 |
|
|
|
|
|
|
|
|
|
|
|
100 |
.0 |
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
||
|
|
400 |
|
Response of Exchange Rate to Output |
|
400 |
|||||
|
|
|
|
|
|
|
|
||
300 |
|
|
|
|
|
|
|
|
300 |
200 |
|
|
|
|
|
|
|
|
200 |
100 |
|
|
|
|
|
|
|
|
100 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
||
1 |
10 |
||||||||
400 |
|
Response of Exchange Rate to Credit |
|
400 |
|||||
|
|
|
|
|
|
|
|
||
300 |
|
|
|
|
|
|
|
|
300 |
200 |
|
|
|
|
|
|
|
|
200 |
100 |
|
|
|
|
|
|
|
|
100 |
0 |
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Exchange Rate to Oil
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Exchange Rate to Inflation
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Response of Exchange Rate to Interest Rate
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
160 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
Table 5.
Variance Decomposition of Forecasted Variables (Model 3)
This table shows the variance decomposition of Model 3 estimated using the SVAR methodology. These decompositions show the proportion of the variance in the forecast error of a variable that can be attributable to its own innovations and innovations in other variable in the VAR system. The variables, namely output, credit, lending and oil denote the growth rate of the index of industrial production, credit card transactions, commercial banks’ lending and oil prices, respectively.
Period |
Oil |
Output |
Inflation |
Credit |
Interest Rate |
Exchange Rate |
|
|
Panel A: Variance Decomposition of Oil |
|
|||
1 |
100 |
0 |
0 |
0 |
0 |
0 |
5 |
96.44 |
1.24 |
0.04 |
0.87 |
1.34 |
0.07 |
10 |
94 |
1.3 |
0.21 |
0.79 |
3.64 |
0.06 |
|
|
Panel B: Variance Decomposition of Output |
|
|||
1 |
0.04 |
99.96 |
0 |
0 |
0 |
0 |
5 |
6.3 |
89.35 |
1.45 |
0.44 |
1.88 |
0.59 |
10 |
6.55 |
88.67 |
1.44 |
0.54 |
2.11 |
0.69 |
|
|
Panel C: Variance Decomposition of Inflation |
|
|||
1 |
0.75 |
0.03 |
99.22 |
0 |
0 |
0 |
5 |
10.05 |
0.9 |
81.03 |
0.26 |
0.14 |
7.61 |
10 |
14.23 |
1 |
75.5 |
0.28 |
0.51 |
8.48 |
|
|
Panel D: Variance Decomposition of Credit |
|
|||
1 |
0.04 |
0.59 |
0.01 |
99.36 |
0 |
0 |
5 |
2.23 |
30.06 |
0.68 |
62.08 |
4.38 |
0.57 |
10 |
2.72 |
34.01 |
0.79 |
57.43 |
4.4 |
0.65 |
|
|
Panel E: Variance Decomposition of Interest rate |
|
|||
1 |
0.03 |
0.31 |
3.37 |
1.02 |
95.26 |
0 |
5 |
9.93 |
2.33 |
8.23 |
2 |
77.05 |
0.46 |
10 |
14.03 |
2.62 |
12.36 |
1.9 |
68.68 |
0.42 |
|
|
Panel F: Variance Decomposition of Exchange rate |
|
|||
1 |
0.93 |
0.66 |
2.3 |
3.09 |
1.74 |
91.28 |
5 |
7.15 |
2.52 |
2.93 |
3.69 |
4.22 |
79.5 |
10 |
7.2 |
2.69 |
2.89 |
3.7 |
5.59 |
77.93 |
VI. CONCLUSION
This paper investigates monetary policy transmission in the presence of credit card usage in the context of Indonesia. Since Indonesia has adopted an inflation- targeting policy, excessive credit card usage is expected to have important implications for monetary policy. Using monthly data from 2006 to 2018 and an SVAR framework, we find that credit card usage marginally affects domestic inflation. However, taking into account the exchange rate, we find credit card usage has an insignificant effect on domestic inflation. Interestingly, our results show that credit card usage in Indonesia is mainly driven by the country’s rapid economic growth over the last decade, which indeed reflects the role of credit cards in consumption smoothing. However, credit card usage is not found to be sensitive to policy rates, indicating that sticky interest rates prevail in the credit card market. Our empirical findings also provide evidence of commercial banks’ proactive lending to credit card users. Finally, monetary policy transmission through the lending channel is found to be weak, since neither commercial bank lending nor
Monetary Policy Transmission and Credit Cards: Evidence from Indonesia |
161 |
|
|
credit card transactions respond to changes in the policy rate. However, the role of external factors, such as global oil price movements and exchange rates, is more prevalent in the transmission process, stressing the need to account for global risk factors while framing monetary policies.
REFERENCE
Abouwafiia, H. E., and Chambers, M.J. (2015). Monetary Policy, Exchange Rates and Stock Prices in the Middle East Region. International Review of Financial Analysis, 37,
Akhand, H., and Milbourne, R. (1986). Credit Cards and Aggregate Money Demand. Journal of Macroeconomics, 8,
Basnet, H. C., and Upadhyaya, K, P. (2015). Impact of Oil Price Shocks on Output, Inflation and the Real Exchange Rate: Evidence from Selected ASEAN Countries. Applied Economics, 47(29),
BIS. (2015). Digital Currencies. Committee on Payment and Market Infrastructure. Basel, Switzerland: Bank for International Settlements.
Calem, P. S., and Mester, L, J. (1995). Consumer Behavior and the Stickiness of Credit Card Interest Rates. American Economic Review, 85 (5),
Canner, G. B., and Cyrnak, A.W. (1985). Recent Development in Credit Card Holding and Use Patterns among U.S. Families. Journal of Retail Banking, 7,
Christiano, L.J., M. Eichenbaum and C.L. Evans (1999). Monetary Policy Shocks: What Have we Learned and to What End? In: J.B. Taylor and M. Woodford (eds.): Handbook of Macroeconomics. Amsterdam
Cushman, D. O., and Zha, T. (1997). Identifying Monetary Policy in a Small Open Economy Under Flexible Exchange Rates. Journal of Monetary Economics, 39,
EIA. (2015).
Friedman, B. M. (1961). The Lag in Effect of Monetary Policy. Journal of Political Economy, 69,
Friedman, B. M. (1999). The Future of Monetary Policy: The Central Bank as an Army with only a Signal Corps? International Finance, 2,
Friedman, C. (2000). Monetary Policy Implementation: Past Present and Future— Will the Advent of Electronic Money Lead to the Demise of Central Banking? International Finance, 3,
Fulford, S. L., and Schuh, S. (2017). Credit card utilization and consumption over the life cycle and business cycle, Working Papers
Geanakoplos, J., and Dubey, P. (2010). Credit cards and infllation, Games and Economic Behavior, 70,
Goodhart, C. A. E. (2000). Can Central Banking Survive the IT Revolution? International Finance, 3,
Juhro, S. M, and Iyke, B. N (2019), Monetary Policy and Financial Conditions in Indonesia, Bulletin of Monetary Economics and Banking, 21,
162 |
Bulletin of Monetary Economics and Banking, Volume 22, Number 2, 2019 |
|
|
Leigh, D. (2005). Estimating the Implicit Inflation Target: An Application to U.S. Monetary Policy, IMF Working Paper No. 05/77, April.
Lee, J., Strazicich, M.C. (2003). Minimum LM Unit Root Test with Two Structural Breaks. Review of Economics Statistics, 85,
Lumsdaine, R.L., Papell, D.H. (1997). Multiple Trend Breaks and the Unit Root Hypothesis. Review of Economics and Statistics, 79,
Mandell, L. (1972). Credit Card Use in the United States. Ann Arbor, Mich.: Institute for Social Research.
Narayan, P., and Popp, S. (2010). A New Unit Root Test with Two Structural Breaks in Level and Slope at Unknown Time. Journal of Applied Statistics, 37,
Narayan, P.K., Susan, S., Poon, W.C., and Westerlund. (2014). Do Oil Prices Predict Economic Growth? New Global Evidence. Energy Economics 41,
OPEC. (2019). Monthly Bulletin, January, Organization of the Petroleum exporting courtiers.
Prabheesh, K.P., and Vidya, C.T.(2018). Do business cycles,
Sharma, S.S., Tobing, L., and Azwar, P. (2018). Understanding Indonesia’s Macroeconomic Data: What Do We Know and What Are The Implications? Bulleting of Monetary Economics And Banking, 21,
Sims, C. (1980). Macroeconomics and Reality. Econometrica, 48 (1),
Sims, C. A. (1992). Interpreting the Macroeconomic Time Series Facts. European Economic Review, 36,
Sims, C.A. (2007). Monetary Policy Models. Brookings Pap. Econ. Act. 38,
Soman, D. (2001). Effects of Payment Mechanism on Spending Behavior: The Role of Rehearsal and Immediacy of Payments. Journal of Consumer Research, 27,
Woodford, M. (2000). Monetary Policy in a World without Money. International Finance, 3,
World Bank. (2017). Global Findex Database, World Bank Group, Washington. Yazgan, M.E., and Yilmazkuday, H. (2011). Effects of Credit and Debit Cards on
the Currency Demand. Applied Economics, 41,
Yilmazkuday, H. (2011). Monetary Policy and Credit Cards: Evidence from a Small Open Economy. Economic Modelling. 28,
Zhang, T. and DeVaney, S.A. (1999). Determinants of Consumer’s Debt Repayment Patterns. Consumer Interests Annual, 45,